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The local stability of approximate periodic solutions and period-doubling bifurcations in
a harmonically forced non-linear oscillator with symmetric elastic and inertia non-linearities
are studied analytically and numerically. Approximate principal resonance solutions are
"rst obtained using a two-term harmonic balance and then a consistent second order
stability analysis of the associated linearized variational equation is carried out using
approximate methods to predict zones of symmetry breaking leading to period-doubling
bifurcation and chaos. The results of the present work, which follows the analysis approach
presented by Szemplinska-Stupnika (1986 International Journal of Nonlinear Mechanics 23,
257}277; 1987 Journal of Sound and <ibration 113, 155}172) are veri"ed for selected system
parameters by numerical simulations using methods of qualitative theory, and good
agreement was obtained between the analytical and numerical results. Finally, a criterion for
the period-doubling bifurcation is proposed analytically, for this type of oscillator, and
compared with computer simulation results that predict the true period-doubling
bifurcation and chaos boundaries. ( 2001 Academic Press
1. INTRODUCTION

The route to chaos from regular period motion (or from chaos to regular periodic motion)
through a sequence of period-doubling bifurcation in non-linear oscillators with single
equilibrium positions has been the subject of many analytical and numerical investigations,
e.g. references [1}10]. These studies and others have shown that this route to (or from)
chaos can be adequately described by making use of approximate analytical methods to
study various instabilities of approximate periodic solutions along with a computer
simulation using methods of the qualitative theory. By making use of variational Hill-type
equations to examine various instabilities of corresponding approximate periodic solutions,
these studies have shown that it is possible to determine and describe with fair accuracy, if
any, the zones of period-doubling bifurcations on the resonance curves of individual
harmonic solutions. Then methods of qualitative theory with the aid of digital computer
simulations were used in these studies to determine the locations of chaotic motion zones,
which are preceded by period-doubling bifurcations. Szemplinska-Stupnika [1, 2] used this
0022-460X/01/280453#27 $35.00/0 ( 2001 Academic Press
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approach in connection with the harmonic balance method to describe the period-doubling
bifurcations in a single equilibrium Du$ng oscillator with asymmetric hardening
non-linearity [2] and the symmetry breaking and then period-doubling bifurcations in
single equilibrium symmetric Du$ng oscillators with softening non-linearity [1]. It is to be
noted that for an oscillator with asymmetric non-linearities, an approximate periodic
solution is asymmetric which usually contains a bias and both even and odd harmonics. For
such oscillators the stability analysis of the variational equation corresponding to an
asymmetric periodic solution shows that even to "rst order the asymmetric periodic
solution can undergo period-doubling bifurcations, i.e., period-doubling bifurcations are
very likely in oscillators with asymmetric non-linearities. The results of the analysis
presented in reference [2], show that for an asymmetric Du$ng oscillator the chaotic
motion appears in a narrow zone which is preceded by a wider period-doubling zone close
to the theoretical stability limit of the 1

2
subharmonic resonance, i.e., in the neighborhood of

the frequency where the 1
2

resonance curve has a vertical tangent. On the other hand,
symmetric non-linear oscillators of the hardening type do not, as a general rule, admit, at
least in the "rst approximation asymmetric solution which is necessary for period-doubling
bifurcations, i.e., the stability analysis of the variational Hill-type equation corresponding to
an approximate periodic solution in a symmetric non-linear oscillator shows that an
approximate solution can undergo period doubling provided that it is asymmetric (e.g., see
references [1, 2] for more details). The results presented in references [2, 3, 9, 10] for the
classical Du$ng oscillator and the Du$ng}Ueda oscillator with hardening non-linearities
obtained using a combination of harmonic balance and numerical simulations, show that
for symmetric non-linear oscillators of the hardening type the transition to (or from) chaos
is a sharp one and is associated with the loss of stability of the third superharmonic resonant
response. In this case the chaotic motion appears at frequencies well below the principal
resonance, i.e., in the region which is not adequately described by a "rst approximate
harmonic solution. It is to be noted that the results presented in references [2, 4, 8}10] and
in many other studies, indicate that for an asymmetric or a symmetric non-linear oscillator
of the hardening type with single equilibrium position oscillator the chaotic motion is
always associated with the loss of stability of secondary resonance (super-, ultrasuper-, sub-
or ultrasub-harmonic). That is, in such oscillators, the chaotic motion forms a transition
zone which separates two periodic solutions having di!erent periods (i.e., having di!erent
topological properties). On the other hand, in the symmetric Du$ng oscillator with
softening-type elastic non-linearity, numerical and analytical results presented in references
[1, 5, 7, 11}13] show that in this oscillator the chaotic motion is preceded by a sequence of
period doubling and appears near the peak of the principal resonance curve. Using
a combined harmonic balance and computer simulation, Szemplinska-Stupnika [1] showed
that the stability analysis of the "rst approximate harmonic solution for this oscillator can
predict the symmetry-breaking and period-doubling bifurcations provided that higher
order instabilities of the corresponding variational Hill-type equation are examined. It is to
be noted that, unlike the classical symmetric Du$ng oscillator with hardening
non-linearity, the symmetric Du$ng oscillator with softening non-linearity can admit in the
"rst approximation, asymmetric solutions which appear in pairs at usually relatively large
response amplitude over a narrow frequency band [5]. For example, in order to illustrate
a point of interest in the present work, consider the non-linear Du$ng oscillator

uK#duR #u#eu3"P cos(Xt#/), (1)

where d, e, P, X and / are constants, and d*0. This Du$ng oscillator is of the hardening
type when e'0 and is of the softening type when e(0. The constant phase / was added to
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the forcing term so that one may obtain a response in which the fundamental harmonic
contains a cosine term only. Using the harmonic balance method, an asymmetric periodic
solution to equation (1) in the "rst approximation takes the form

u (t)"A
0
#A

1
cos(Xt), (2)

where A
0

is a constant bias and A
1

is constant amplitude. Substituting equation (2) and its
derivatives into equation (1), ignoring harmonic terms higher than the fundamental which
arise, and balancing the remaining harmonics leads to the following set of three non-linear
algebraic equations for the unknowns A

0
, A

1
, X and / which de"ne the steady state

frequency response:

A
1
(1!X2#3eA2

0
#3

4
eA2

1
)"P cos /, (3)

dXA
1
"P sin/, (4)

A
0

(1#eA2
0
#3

2
eA2

1
)"0. (5)

From equation (5) one can see that there are two possible solutions: the "rst has A
0
"0

which corresponds to the symmetric solution, and the second is asymmetric for which the
bias is given by

A
0
"$C!

1

e A1#
3

2
eA2

1BD
1@2

(6)

From equation (6) one can easily see that a pair of asymmetric solutions in the "rst
approximation, i.e., a pair of non-zero real values of the bias A

0
, may exist for a certain

range of amplitude and system parameters only when e(0, e.g., when the oscillator is of the
softening type. The steady state A

1
}X relation for the asymmetric solution may be obtained

by adding the square of equation (3) to that of equation (4) and using equation (6) whereby
one obtains

X2"!A2#
d2

2
#

15

4
eA2

1B$C
d4

4
#d2 A2#

15

4
eA2

1B#A
P

A
1
B
2

D
1@2

, e)0. (7)

On the other hand, the steady state A
1
}X relation corresponding to the "rst approximate

symmetric solution for the oscillator in equation (1) is obtained by adding the square of
equation (3) to that of equation (4) with A

0
"0. This leads to

X2"A1!
d2

2
#

3

4
eA2

1B$C1#
d4

4
!d2 A1#

3

4
eA2

1B#A
P

A
1
B
2

D
1@2

, (8)

which is valid for both the softening and hardening oscillators. The frequency response
curves obtained using equations (7) and (8) are shown in Figure 1 for the softening case
e"!1 with d"0)4 and P"0)23 which was the subject of numerous detailed
investigations (e.g., references [1, 5, 8, 11, 13, 14]). Also shown in this "gure are the unstable
regions of the above approximate harmonic solutions. The boundaries of these unstable
regions were determined by following the procedure in references [1, 2, 15] as outlined in
section 2, e.g., by analyzing the associated linearized variational Hill-type equation using
the harmonic balance method. These results, which were also reported in references [1, 5, 8,
11, 14], show that the resonance curves of the asymmetric solution intersect those of the
symmetric solution near the region of chaotic motion, which lies in the zone where the



Figure 1. Steady state frequency response (SSFR), "rst order stability (1st stab.), second order stability (2nd
stab.), biased solution and its stability using a single term only. P"3)5, e
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principal resonance curves of the symmetric "rst approximate solution may enter the
second unstable region of the corresponding variational Hill-type equation. Furthermore,
these asymmetric solutions are only stable within this narrow zone [5]. It is to be noted that
although the interest here is not speci"cally in the frequency response characteristics and
stability of approximate solution of softening oscillators in the form given by equation (1),
analytical and numerical simulation results presented in reference [14] indicate that the
qualitative nature of the approximate harmonic balance solution changes, for certain ranges
of system parameters, if one uses a two-mode (i.e., fundamental plus third) harmonic
balance solution instead of a single-mode (i.e., only fundamental) harmonic balance
solution. The results of stability analysis of the approximate harmonic solutions presented
in reference [14] and in more detail in reference [15], show that erroneous (i.e., qualitatively
incorrect) instability boundaries and type can be obtained if the level of approximation in
the solution of the associated linearized variational equation is not consistent with (i.e., the
same as) that of the approximate solution.

Dooren [13] introduced a numerical procedure to study the transition from regular
periodic motion to chaotic behavior of the Du$ng oscillator in equation (1) with softening
non-linearity. The procedure used is based on the computation of accurate higher order
approximate periodic solution of Galerkin's type in conjunction with the corresponding
stability analysis of the "rst variational equation.

Zavodney et al. [16] investigated the response of a single-degree-of-freedom system with
quadratic and cubic non-linearities to a principal parametric resonance. They used the
method of multiple-time-scales (MMS) to determine the second order modulation of the
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amplitude and phase, and veri"ed these equations by integrating the governing equations
using an analog computer &&to obtain a global bifurcation diagram in the excitation
amplitude}excitation frequency plane'' and a digital computer &&to obtain PoincareH maps
and transition from a smooth basin to a fractal basin of attraction''.

Awrejcewicz and Mrozowski [17] discussed the chaotic dynamics of a particular
non-linear oscillator having Du$ng-type sti!ness, Van der Pol damping and dry friction.
They utilized an averaging technique to obtain information regarding the bifurcation
behavior of the vibrating oscillator and analyzed numerically, the chaotic behavior of the
oscillator for parameters near bifurcation curves. Also, they studied the e!ect of dry friction
on the behavior of strange chaotic attractor.

Nayfeh and Sanchez [7] also studied the periodic and non-periodic response of the
Du$ng oscillator in equation (1) with softening non-linearity. They used a second order
multiple-time-scale (MMS) with reconstitution to obtain an approximate second order
solution in conjunction with the Floquet theory to analyze the associated variational
equation, which was linearized about the predicted second order approximate solution. The
calculated Floquet multipliers were used to guide the generation of the bifurcation diagram
in the parameter space of interest. They showed that the proposed scheme is capable of
predicting symmetry-breaking and period-doubling bifurcation as well as jumps to either
bounded or unbounded motions. The results obtained are validated using analog and
digital computer simulations, which show chaos and unbounded motions.

Asfar and Masoud [18] investigated the phenomenon of period-doubling bifurcation
with the Du$ng oscillator with negative linear sti!ness with the aid of approximate
analytical methods and computer simulation. They use the Hill-type variational equation
with the Floquet theory to "nd the type of subharmonic instabilities that are responsible for
the occurrence of period doublings in the considered system and they proposed a threshold
criterion for the onset of period doubling and compared it with the computer simulation.

In the present work, which is motivated by the work in references [1, 2], the main concern
is with approximate analysis, aided with a computer simulation, of the stability,
symmetry-breaking and period-doubling bifurcations leading to chaos of approximate
harmonic solutions of the harmonically driven non-linear oscillators having single
equilibrium positions and described by the general non-dimensional form

uK#duR #u#e
1

(u2uK#uuR 2)#e
2
u3"P cos (Xt), (9)

where d, e
1
, e

2
, P and X are constant positive parameters. The interest here is focused on the

cases where the oscillator in equation (9) is not weakly non-linear, i.e., when the
displacement u is of order unity, e

1
and/or e

2
are not necessarily small compared to unity. In

the above oscillator, which has a single equilibrium position at u"0, the two non-linear
terms inside the parentheses are of inertial type having a net softening e!ect, while the last
non-linear term is of hardening type. Thus, depending on the relative values of e

1
and e

2
the

characteristics of the frequency response curves of this oscillator may be of softening or
hardening type. These characteristics were studied in reference [19] using the harmonic
balance method and two versions of the second order perturbation multiple-time-scale with
reconstitution method. The results in reference [19] show that the two-mode harmonic
balance method yields quantitatively fairly accurate and qualitatively accurate solutions
even when the oscillator is relatively strongly non-linear, while the "rst approximate
solution obtained using a single-mode harmonic balance or the perturbation MMS method
as well as the second order approximate solution obtained using MMS with reconstitution
may lead to qualitatively incorrect frequency response characteristics. The interest in the
above oscillator lies in the physical systems that it can model, such as the in-plane #exural
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vibrations of an inextensible beam element [20, 21]. Depending on the range of its
parameters, the above oscillator may exhibit primary and secondary (sub- or
super-harmonic) resonance responses as well as irregular (chaotic) behavior. The focus of
interest here, which is motivated by the work in references [1, 2], is to use the methods
of approximate theory in conjunction with numerical simulation using the methods of
qualitative theory such as phase plane plots, PoincareH maps, frequency spectrums and
Lyapunov exponents, to determine for a selected range of system parameters the boundaries
of period-doubling bifurcations and chaotic zones relative to the principal resonance
curves. Based on the results presented in reference [19] the two-term harmonic balance
method is used to obtain the approximate fundamental symmetric solution, and to analyze
to second order the stability of the associated linearized variational Hill-type equation. The
harmonic balance method is also used in this work to study the steady state frequency
response curves and stability of the asymmetric solution of the non-linear oscillator.

2. APPROXIMATE SYMMETRIC SOLUTIONS

An approximate solution to the oscillator in equation (9) may be obtained using the
harmonic balance method which does not place a restriction on the order of magnitudes of
non-linear terms relative to linear ones, i.e., e

1
and e

2
need not be small compared to 1. For

convenience, equation (9) is rewritten in terms of a new time scale ¹"Xt, so that it becomes

X2uK#XduR #u#e
1
X2u2uK#e

1
X2uuR 2#e

2
u3"P cos (¹#/), (10)

where dots are now derivatives with respect to the new time ¹, and the unknown constant
phase / has been added to the harmonic excitation so that one can obtain a harmonic
balance solution in which the fundamental has a cosine term only. A two-term approximate
symmetric solution to equation (10) can be obtained by substituting

u (¹)"A
1
cos¹#A

3
cos 3¹#B

3
sin 3¹ (11)

into equation (10), where A
1
, A

3
, B

3
and / can be determined by the harmonic balance

method (HB), and solving the set of non-linear algebraic equations for A
1
, A

3
, B

3
and /.

Results for the steady state response using a two-term harmonic balance method (2THB)
have been presented in reference (19) for di!erent values of the parameters d, e

1
, e

2
and P.

For convenience, in Appendix A, the application of the harmonic balance method using
a single term (SHB) and two terms (2THB), from which one can obtain the steady state
response curves, is shown.

3. STABILITY ANALYSIS OF SYMMETRIC HARMONIC BALANCE SOLUTIONS

The stability analysis of the approximate harmonic balance solution in equation (11) may
be carried out by introducing a small perturbation v (¹) to the assumed solution (11), i.e., by
substituting

u (¹)"A
1
cos¹#A

3
cos 3¹#B

3
sin 3¹#v (¹) (12)

into equation (10), for the sake of brevity and to demonstrate the procedure used in
obtaining results for the stability. The stability analysis will be examined by using a single
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term only in the assumed solution, i.e., by substituting u (¹)"A cos¹#v (¹) into equation
(11). This leads to the following non-linear variational equation:

vK X2 A1#e
1

A2

2
#e

1
v2#2e

1
vAcos¹#e

1

A2

2
cos 2¹B

#vR (dX!2e
1
X2Av sin¹!e

1
X2A2sin2¹)

#vA
3

2
e
2
A2#1!e

1
X2

A2

2
#e

1
X2vR 2#

3

2
e
2
A2 cos 2¹!

3

2
e
1
X2A2 cos 2¹B

#e
1
X2A2vR 2 cos¹#v2A cos¹ (3e

2
!e

1
X2)#e

2
v3"

A2

4
(2e

1
X2!e

2
) cos 3¹. (13)

Results from substituting equation (12) into equation (11) are shown for convenience in
Appendix B.

The stability is governed by the linearized version of equation (13). In addition, the
excitation term on the right-hand side is deleted, because it has no in#uence on the stability;
this leads to the following Hill-type equation:

vK X2 A1#e
1

A2

2
(1#cos 2¹)B#vR (dX!e

1
X2A2 sin 2¹)

#vA1#
A2

2
(3e

2
!e

1
X2)#

3

2
A2 cos 2¹ (e

3
!e

1
X2)B"0. (14)

Then by virtue of the Floquet theory, a particular solution of the linearized variational
equation LVE (14), is sought in the form [1]

v (¹ )"eb¹ g (¹), (15)

where b is de"ned as the characteristic exponent and g (¹) is a periodic function with
periods ¹ and ¹/2. The solution of v (¹) is stable (respectively, unstable) if the real part of
b is negative (positive); and the real part of b is zero on the boundary between stable and
unstable regions [15].

The approximate theory of the Hill-type equations allows one to assume functions g
I
(¹)

and g
II
(¹) as truncated Fourier series, so that at the stability boundaries, i.e., b"0. the

disturbances are sought as

g
I
(¹)"v(¹)b/0

"

=
+
m

b
m
cos(m¹#t

m
)"b

mc
cos(m¹)#b

ms
sin(m¹), m"1,3,5,2,R,

(16)

g
II
(¹)"v(¹)b/0

"b
0
#

=
+
m

b
m
cos(m¹#t

m
)"b

0
#b

mc
cos(m¹)#b

ms
sin(m¹ ),

m"2,4,6 ,2,R. (17)

The instabilities of type I ("rst order stability) are those which bring odd harmonic
components to the system response, while type II (second order stability) gives a build-up of
the even harmonic component [1].



460 A. A. AL-QAISIA AND M. N. HAMDAN
The "rst and second order unstable regions can be predicted by substituting equations
(16) and (17) into the LVE (14) and using the harmonic balance method. This leads to an
in"nite set of linear homogeneous equations (b

mc
and b

ms
, m"1, 3, 5,2, R for analysis I)

or (b
0
, b

mc
and b

ms
, m"2, 4, 6,2 , R for analysis II). These equations can be expressed in

matrix form as Ax"0, where x is one of the two column vectors (2, b
ic
, b

is
,2 )T, and

(b
0
,2, b

ic
, b

is
,2 )T; A-is the characteristic matrix. Nontrivial solutions for b

m
exist only

when the determinant (D) of the characteristic matrix, vanishes. This determinant depends
on b, thus D(b)"0 provides the characteristic equation for b. The stability conditions
become D (b"0) is positive (respectively, negative) in a stable (unstable) region, and
D(b"0)"0 at the boundary between the stable and unstable regions [15].

To determine the boundaries of the "rst unstable region &&i.e., analysis I'' according to the
above procedure, one may substitute as a "rst approximation

g
I
(¹)"v(¹)b/0

"b
1c

cos(¹)#b
1s

sin(¹) (18)

into equation (14) and applying the harmonic balance method to obtain the following set of
algebraic equations for (b

1c
, b

1s
):

C
1!X2#

A4

4
(3e

2
!2e

1
X2) !dX

dX 1!X2#
A2

4
(9e

2
!6e

1
X2)D Gb1cb

1s
H"G

0

0H . (19)

Non-trivial solutions for b
1c

, b
1s

exist only when the determinant of the coe$cient matrix in
(19) vanishes, which gives the following relation:

X4A1#2e
1
A2#

3

4
e2
1
A4B#X2 Ad2!2!A2 (3e

2
#2e

1
)!

9

4
e
1
e
2
A4B

#A1#3e
2
A2#

27

16
e2
2
A4B"0. (20)

Solving the last equation for X2 gives the boundaries of the "rst order unstable region. The
boundaries of the second unstable region &&i.e., analysis II'', which may give rise to
period-doubling bifurcation (PDB), can be obtained by substituting the following equation
as a "rst approximation:

g
II
(¹)"v(¹)b/0

"b
0
#b

2c
cos(2¹)#b

2s
sin(2¹ ), (21)

into equation (14) and applying the harmonic balance method to obtain a set of algebraic
equations,

C
1#

A2

2
(3e

2
!e

1
X2) 0

3A2

4
(e
2
!e

1
X2)

0 1!4X2#
A2

2
(3e

2
!5e

1
X2) !2dX

3A2

2
(e
2
!e

1
X2) 2dX 1!4X2#

A2

2
(3e

2
!5e

1
X2)D G b

0
b
2s

b
2c
H"G

0
0
0H .

(22)



BIFURCATION AND CHAOS OF OSCILLATORS 461
Non-trivial solutions for b
0
, b

2s
, b

2c
exist only when the determinant of the coe$cient matrix

in equation (22) vanishes, which gives the following relation between A and X, for certain
system parameters d, e

1
, e

2
:

A6

16
(e3
2
!99e

1
e
2
X2#93e2

1
e
2
X4!5e3

1
X6)

#

A4

8
(45e2

2
!X2 (108e2

2
#114e

1
e
2
)#X4 (216e

1
e
2
#61e2

1
)!44e2

1
X6)

#

A2

2
(9e

2
#X2 (12d2e

2
!48e

2
!11e

1
)#X4 (48e

1
#48e

2
!4d2e

1
)!16e

1
X6)

#1#X2 (4d2!8)#16X4"0 (23)

to be satis"ed at the stability boundary. Equation (23) can be resolved for A2 to give the
boundaries of the second unstable region and the critical bifurcation value of the amplitude.

4. APPROXIMATE ASYMMETRIC SOLUTIONS AND THEIR STABILITIES

Using the harmonic balance method, an asymmetric periodic solution to equation (10) in
the "rst approximation takes the form

u (¹ )"A
0
#A

1
cos¹, (24)

where A
0

is a constant bias and A
1

is the amplitude. Substituting equation (24) and its
derivatives into equation (10), one obtains

A
1 CA2

0
(3e

2
!e

1
X2)#

A2
1

4
(3e

2
!2e

1
X2)#1!X2D"P cos/, (25)

A
1
dX"P sin/, (26)

A
0 CA2

0
e
2
#

A2
1

2
(3e

2
!e

1
X2)#1D"0. (27)

For A
0
O0, it follows from equation (27) that

A2
0
"

1

e
2
C
A2

1
2

(e
1
X2!3e

2
)!1D. (28)

Equations (25), (26) and (28), yield (in terms of A
1

only) the frequency response equation of
the system:

A
225

16
e4
2
!

75

4
e
1
e3
2
X2#10e2

1
e2
2
X2!

5

2
e3
1
e
2
X6#

1

4
e4
1
X8B A6

1

#A15e3
2
!

35

2
e
1
e2
2
X2#

15

2
e2
2
X2#7e2

1
e
2
X4!5e

1
e2
2
X4!e3

1
X6#e2

1
e
2
X6B A4

1

#(4e2
2
#d2X2!4e

1
e
2
X2#4e2

2
X2#e2

1
X4!2e

1
e
2
X4#e2

2
X4) A2

1
"P2. (29)
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Steady state resonance curves A
0

and A
1

can be determined from equations (28) and (29)
respectively.

The stability of the assumed solution (24), can be examined by using the same procedure
followed in the previous section, i.e., by substituting u (¹)"A

0
#A

1
cos¹#v(¹), into

equation (10). This yields the following linearized version of the variational equation:
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!e

1
X2)D"0. (30)

It is clear that equation (30) has two parametric excitations with periods ¹ and ¹/2. To
examine the period-doubling bifurcation in the "rst approximation of the biased solution,
one may seek a particular solution at the stability limit as

v (¹)"b
1@2

cosA
¹

2
#t

1@2B"b
1@2)c

cosA
¹

2B#b
1@2)s

sinA
¹

2B . (31)

Then, by substituting equation (31) and its derivatives into equation (30), and applying the
harmonic balance method and putting the condition of non-trivial solution for b

1@2)c
and

b
1@2)s

, i.e., the determinant of the coe$cient matrix equals zero, a relation between the
amplitudes (A

0
and A

1
) and the frequency X to be satis"ed at the stability boundary can be

obtained, such that
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For convenience, teh elements of the coe$cient matrix are given in Appendix B.

5. COMPUTER SIMULATION, RESULTS AND DISCUSSIONS

The stability analysis of the non-linear oscillator described in equation (10) was veri"ed
near the principal resonance zone for selected values of system parameters P, e

1
, e

2
and d,

using computer simulation and with the aid of time histories, phase plane, PoincareH map
and Lyaponuv fractal dimension.

The response of the non-linear oscillator is controlled by two competing softening
&&e

1
(u2uK#uuR 2)'' and hardening &&e

2
u3'' non-linearities, which exhibit fundamentally two

di!erent response characteristics [19], depending on the relative value of e
1

and e
2
.
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Results for a softening-type oscillator, i.e., e
1
/e

2
'1)6, are presented in Figure (1) and the

parameters P, e
1
, e

2
and d were chosen to be 3)5, 10, 1, 0)5 respectively.

In Figure 1, the steady state response using the HB method, "rst and second order
unstable regions are obtained using a single term only. In the same "gure is also shown the
biased solution given in equation (24). One can see from Figure 1 that the "rst order
unstable region intersects the steady state response curve at the vertical tangency point as
one may expect &&Figure 2'', and the second order unstable region intersects the response
curve at X:1)43. To improve the accuracy of the predicted steady state response and
stability, results are obtained and shown in Figure 3, for the same oscillator but using two
terms for the steady state response, i.e., equation (A8), and stability analysis, i.e., using two
terms in the assumed solution of the variational equation (B2) to obtain results for both the
"rst and second order stabilities. In addition, the same "gure shows also the biased solution
and its stability. Results of the stability analysis &&using two terms Figure 3'' show that the
"rst order unstable region disappears and the steady state response curve is stable in the
resonance area and it seems that the frequency response resembles linear behavior. This
behavior was veri"ed numerically and steady state numerical solutions were obtained in the
resonance area, as one can see from Figure 4. Stability analysis also shows, that the steady
state response curve penetrates into the second unstable region at 1)1836(X(5)8482, and
the biased solution is unstable at 0)72(X(2)07, at which there is a possibility of
period-doubling bifurcation (PDB). It is worth mentioning that the PDB can occur also
inside the frequency range 1)1836(X(5)8482, predicted by the second unstable region.

It was found that by increasing the frequency, the PDB is "rst observed at X"1)06
followed by higher period doublings 4¹ at X"1)09 and they develop in chaos at
X"1)095. The "rst chaotic zone observed is in the range 1)095(X)1)29 and then ends
by a 9¹ attractor followed by a 3¹ one. The 3¹ attractor disappears and chaos returns in
Figure 2. Expanded view of Figure (1): **, SSFR; } ) } ) } ), 1st stab.



Figure 3. Steady state frequency response (SSFR), "rst order stability (1st stab.), second order stability
(2nd stab.) using two terms. P"3)5, e

1
"10, e

2
"1 and d"0)5:***, SSFR. &&A

1
of equation (11)'', d 2nd stab.,

A
0
, A

1
, A

`ve
same as in Figure 1.

Figure 4. Steady state frequency response (SSFR) using two terms and numerical solution. P"3)5, e
1
"10,

e
2
"1 and d"0)5: ***, SSFR; L, numerical solution.
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Figure 5. Time history, phase plane and poincareH map. P"3)5, e
1
"10, e

2
"1 and d"0)5: (a) X"1)06;

(b) X"1)09; (c) X"1)095, j
1
"0)0619, j

2
"0)0, j

3
"!0)1419 and d

f
"2)436; (d) X"1)80, j

1
"0)2142,

j
2
"0)0, j

3
"!0)2989 and d

f
"2)717; (e) X"2)20; (f) X"2)205, j

1
"0)2619, j

2
"0)0, j

3
"!0.3796 and

d
f
"2)690; (g) X"2)45, j

1
"0)3064, j

2
"0)0, j

3
"!0)4488 and d

f
"2)683.
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Figure 5. Continued.
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the range 1)80)X)2)2, and it ends also by are asymmetric 6¹ attractor. Further
investigations showed that the third chaotic zone in the range 2)2(X)2)5 ends with
higher period doublings 4¹, which is followed by PDB in the range, 2)6(X)3)0 and at
X"3)0 periodicity returns to the system.

In Figures 5, the time histories, phase planes and PoincareH maps are shown for di!erent
values of X and for the parameters (P"3)5, e

1
"10, e

2
"1, d"0)5). Results presented in

Figures 1 to 4 and with the aid of computer simulations &&Figure 5'', show that, and as one
may expect, the resonance curves of the asymmetric solution intersect those of the
symmetric solution near the region of chaotic motion, which lies in the zone where the
principal resonance curves of the symmetric solution may enter the second unstable region.

Chaotic behavior of the non-linear oscillator is veri"ed also by another diagnostic
tool which is used in dynamical systems, the calculation of Lyapunov exponents. In the
present work the Lyapunov exponents are calculated, using the algorithm presented
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by Wolf et al. [22], from the generated time histories, i.e., by integrating equation (10) using
the Runge}Kutta method. Since the dimension of the considered oscillator is 3, the behavior
is chaotic if j

1
'0, j

2
"0 and j

3
(0 with + j

i
(0, where j

1
, j

2
and j

3
are the Lyapunov

exponents. The fractal dimension of the chaotic attractor can be calculated from the
Lyapunov exponents according to the relation [22]

d
f
"n#

+n
i/1

j
i

Dj
i`1

D
, (33)

where n is de"ned by the condition, j
1
#j

2
#2#j

n
'0. On the presented PoincareH

maps, in Figures 5, 7 and 11, that have chaotic behavior, the calculated Lyapunov
exponents and the fractal dimensions are shown to be used as a diagnostic tool for chaos.

In the light of the presented results, it can be shown that a criterion that might predict the
necessary physical parameters combination for this type of oscillators, for PDB can be
proposed. However, PDBs in many non-linear systems occur just before the onset of choas.
Therefore, PDBs may be considered often as the lower threshold of chaos [18]. Once the
second unstable region intersects with the steady state response curve, i.e., equation (23) is
satis"ed, one can use this equation which gives critical bifurcation value of the amplitude as
a function of the frequency and the system parameters, A

cr
,A

cr
(X, e

1
, e

2
, d). Upon

substituting the value of A
cr

into the frequency response equation (A4), one can obtain the
critical value of the forcing parameter [1], such that

A
1

16
(9e2

2
!12e

1
e
2
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1
X4)BA6

cr
#A

3

2
e
2

(1!X2)#e
1
(X4!X2)B A4

cr

#(1#X2 (d2!2)#X4) A2
cr
"P2

cr
. (34)

Equation (34) may give the minimum value of the forcing parameter required for
period-doubling bifurcation and may be used as a threshold criterion for PDB.
Figure 6. Analytical PDB criterion obtained using equation (34), true PDB and true chaotic boundaries.
P"3)5, e

1
"10, e

2
"1 and d"0)5: ***, Analytical PDB; )))))))))), true PDB; } } } }, true chaos.
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In Figure 6, the proposed criterion is shown with the true boundaries of PDB and chaos
for the softening-type non-linear oscillator (P"3)5, e

1
"10, e

2
"1, d"0)5). The di!erence

between the proposed criterion and the true boundary of PDB is due to the fact that it is
calculated by using a single term only in the assumed solution. On the other hand, the
boundaries of the true PDB and chaos have the same qualitative characteristics and they
give the minimum threshold values for both PDB and chaos.

To verify the results presented in Figure 6 for the true boundaries of PDB and chaos, time
histories, phase planes and PoincareH maps are shown in Figure (7), for e

1
"10, e

2
"1,

d"0)5 and X"2)0, at di!erent values of P. The behavior of the oscillator is periodic at
P"1)68, PDB appears at P"1)69 and higher period doublings (4¹, 8¹) and chaos appear
at P"1)83, 1)85 and 1)86, respectively.
Figure 7. Time history, phase plane and poincareH map. e
1
"10, e

2
"1, d"0)5 and X"2)0 but for di!erent

values of the excitation amplitude P (a) P"1)68; (b) P"1)69; (c) P"1)83; (d) P"1)85; (e) P"1)86, j
1
"0)15,

j
2
"0)0, j

3
"!0)2332 and d

f
"2)64322.



Figure 7. Continued.
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In Figure 8, the steady state response, "rst order and second unstable boundaries, biased
solution and stability of the biased solution &&asymmetric'' are presented for the non-linear
oscillator with hardening characteristics, i.e., e

1
/e

2
(1)6, for the parameters (P"35,

e
1
"0)5, e

2
"1, d"0)1). The "rst order unstable region intersects the response curve at the

point of vertical tangency and the second unstable region has two boundaries; the "rst one
is located at the superharmonic resonance zone at 0)925(X(1)02 and the second
intersects the response curves at X"3)30. In the "gure, the asymmetric solution intersects
the symmetric one at X:2)55, i.e., before the steady state response enters the second
boundary of the second unstable region.

In Figure 9, results are obtained for the same hardening-type oscillator, i.e., P"35,
e
1
"0)5, e

2
"1, d"0)1, but using two terms for the steady state frequency response and

stability analysis. Here the "rst order unstable region results obtained using two terms has
expected characteristics, i.e., intersect the steady state response curve at the point of vertical
tangency as shown in Figure 10. The second order stability analysis predicts also two
portions: the "rst one at 0)9754(X)1)0616 and the second one at X*3)0918. As one can
see, the estimates of the frequency bands of the two portions of the second unstable analysis
have been improved when using two terms in the stability analysis. Results obtained from
asymmetric solution indicate that the PDB may rise as mentioned before at X:2)55, and
at the frequency band of the "rst portion of the second unstable region.

Computer simulations inside the "rst portion, i.e., in the superharmonic resonance area,
have predicted three chaotic zones; the "rst at 0)70(X(0)71, the second at
0)74(X(0)77 and the third one at 1)019)X)1)080, PDB at 0)79(X(0)81 and
higher period doubling (4¹) at X"0)78. Computer simulations at values of X+2)55 where
the symmetric solution bifurcates into an asymmetric one &&just before the symmetric



Figure 8. Same as Figure 1, but for the hardening-type oscillator, using a single term only: P"35, e
1
"0)5,

e
2
"1 and d"0)1.

Figure 9. Same as Figure 3, but for the hardening-type oscillator, using two terms: P"35, e
1
"0)5, e

2
"1 and

d"0)1.

470 A. A. AL-QAISIA AND M. N. HAMDAN



Figure 10. Expanded view of Figure 9: ***, SSFR; L, 1st stab.
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solution enters the second portion of the second unstable region at X'3)0918'' have shown
also some transitions in response of oscillator summarized as follows; PDB in three zones:
the "rst at 2)52(X(2)71, the second at 3)82(X(4)055 and the third one at
4)58(X(4)98, and higher period doublings 8¹ at X"4)6 and 16¹ at X"2)72.

In Figure 11, time histories, phase planes and poincareH maps for the hardening oscillator
are shown for P"35, e

1
"0)5, e

2
"1, d"0)1 and for some selected values of X which

simulate di!erent behaviors of the hardening-type oscillator.

6. CONCLUSIONS

The results presented in this work indicate that for the type of non-linear oscillators
governed by equation (10), two-terms harmonic solutions of the steady state frequency
response and second order stability analysis of the associated linearized variational Hill
type equation may predict with good accuracy the portions on the steady state frequency
response at which the period-doubling bifurcation (PDB) may rise.

It has been shown that the resonance curves of the asymmetric solution intersect those of
the symmetric solution before the symmetric solutions penetrate into the second unstable
region, regardless of the characteristic type of the oscillator, i.e., softening or hardening. In
addition, it has been shown that at the point of intersection between asymmetric and
symmetric solutions, i.e., when A

0
in the biased solution has non-zero real value, the

symmetric solution bifurcates into an asymmetric one and the PDB appears in this area and
in some cases this PDB develops into chaos.

A criterion for the PDB is presented analytically for this type of non-linear oscillators, i.e.,
with two competing softening &&e

1
(u2uK#uuR 2)'' and hardening &&e

2
u3'' non-linearities. The

boundaries of the true PDB and chaos are obtained numerically according to the
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information obtained from stability analysis. These boundaries have the same qualitative
characteristics and give the minimum threshold value for PDB and chaos, and it can be
used to avoid the PDB and chaotic behavior of this type of oscillator for certain
combinations of system parameters. The di!erence between the calculated and the true
PDB boundaries results from neglecting the third harmonic component in the assumed
solution used in calculating the critical excitation amplitude P

cr
, inside the second unstable

region.
First order stability results obtained suggest that a more detailed analysis is required, i.e.,

the analysis which uses some or all of the harmonics used in the assumed solution or
analysis which uses some higher harmonics which are not included in the assumed solution,
in speci"c for the softening-type oscillator, which is beyond the scope of the present work.
Figure 11. Time history, phase plane and PoincareH map. P"35, e
1
"0)5, e

2
"1, d"0)5: (a) X"0)70,

j
1
"0)0929, j

2
"0)0, j

3
"!0)1105 and d

f
"2)840; (b) X"0)75, j

1
"0)1385, j

2
"0)0, j

3
"!0)1599 and

d
f
"2)866; (c) X"0)78; (d) X"0)80; (e) X"1)03, j

1
"0)0901, j

2
"0.0, j

3
"!0)1068 and d

f
"2)844.



Figure 11. Continued.
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APPENDIX A: HARMONIC BALANCE SOLUTION

A.1. SINGLE TERM HARMONIC SOLUTION (SHB)

According to the HB method, an approximate solution of equation (10), takes the form

u (¹)"A cos¹, (A1)

where A is the steady state response amplitude. Substituting equation (A1) into equation
(10), neglecting third harmonics that arise, and equating coe$cients of "rst harmonics, one
obtains the following equations:

A
3

2
e
2
!

e
1
2

X2B A3#(1!X2) A"P cos /, (A2)

XdA"P sin/. (A3)

The steady state frequency response is obtained by squaring and adding equations (A2) and
(A3) and solving for X2 as a function of A; this yields the steady state frequency response:
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Equation (A4) can be written in the form
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, (A5)

where
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Equation (A5) yields two real solutions for X provided that the radical term is real and less
than R

1
; a single real solution is obtained when the radical term is zero or greater than R

1
,

and no real solution exists when R2
1
!R

2
(0.

A.2. TWO-TERM HARMONIC SOLUTION (2THB)

In order to improve the accuracy of SHB approximation one includes higher harmonics
in the assumed solution in equation (A1). In this work, only one more term is added to this
equation, whereby the two-term approximation, having the same period as the excitation,
to the steady state solution of the system in equation (10) with odd non-linearities takes the
form

u(¹)"A
1
cos¹#A

3
cos 3¹#B

3
sin 3¹. (A8)

Substituting equation (A8) and its derivatives into equation (10) and using the same
procedure followed previously and neglecting the higher order harmonics, one obtains the
following coupled non-linear algebraic equations for A
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These equations may be expressed in a more convenient from as follows. First, squaring and
adding equations (A9) and (A10) and solving for X2 leads to

aX4#bX2#c"0, (A13)
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where
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1
A

1
A

3
B2

3
P50e2

1
A2

3
B2
3
#25e2

1
B4
3
,

b"d2!3
2
e
2
A2

1
!3

2
e
2
A

1
A

3
!3e

2
A2

3
!3e

2
B2
3
!3

4
e
1
e
2
A4

1
!3e

1
e
2
A3

1
A

3
!45

4
e
1
e
2
A2

1
A2

3

!12e
1
e
2
A

1
A2

3
!15e

1
e
2
A4

3
!45

4
e
1
e
2
A2

1
B2

3
!12e

1
e
2
A

1
A

3
B2

3
!30e

1
e
2
A2

3
B2
3

!15e
1
e
2
B4
2
!2!e

1
A2

1
!3e

1
A

1
A

3
!10e

1
A2

3
!10e

1
B2
3
,

c" 9
16

e2
2
A4

1
#9

8
e2
2
A3

1
A

3
#45

16
e2
2
A2

1
A2

3
#9

4
e2
2
A

1
A3

3
#9

4
e2
2
A4

3
#45

16
e2
2
A2

1
B2

3
#9

4
e2
2
A

1
A

3
B2
3

#9
2
e2
2
A2

3
B2
3
#9

4
e2
2
B4

3
#3

2
e
2
A2

1
#3

2
e
2
A

1
A

3
#3e

2
A2

3
#3e

2
B2
3
#1#3e

1
dX3A

1
B
3

!2
3

e
2
dXA

1
B

3
!

P2

A2
1

. (A14)

Next, equations (A11) and (A12) are solved implicitly for A
3

and B
3

respectively:

B
3
"

[!3
4

e
2
B
3
(A2

3
#B2

3
)#9

2
e
1
X2B

3
(A2

3
#B2

3
)#3A

3
dX]

[3
2
e
2
A2

1
#(1!9X2!5 e

1
X2A2

1
)]

, (A15)

A
3
"

[A3
1
((e

1
/2)X2!e

2
/4)!3

4
e
2
A

3
(A2

3
#B2

3
)!3dXB

3
#9

2
e
1
X2A

3
(A2

3
#B2

3
)]

[3
2
e
2
A2

1
#1!9X2!5 e

1
X2A2

1
]

. (A16)

Equation (A13) can be written using the form

X2"R
3
$JR2

3
!R

4
, (A17)

where R
3

and R
4

can be calculated from equation (A14), so that, R
3
"(!b/2a) and

R
3
"(c/a). Equation (A17) has two real solutions provided that R2

3
'R

4
and

JR2
3
!R

4
(R

3
. A single real solution exists provided that R2

3
'R

4
and JR2

3
!R

4
'R

3
,

and no real solution exists when R2
3
(R

4
. Equations (A17), (A15) and (A16) were solved

iteratively with an accuracy of 10~8 to de"ne steady state solution.

APPENDIX B: STABILITY ANALYSIS

B.1. SECOND ORDER STABILITY ANALYSIS USING TWO TERMS

Second order stability can be obtained by substituting

u (¹ )"A
1
cos¹#A

3
cos 3¹#B

3
sin 3¹#v(¹ ) (B1)

into equation (10); this leads to the following non-linear variational equation:

vK X2 G1#
e
1
2

(A2
1
#A2

3
#B2

3
#(A2

1
#2A

1
A

3
) cos 2¹#2A

1
A

3
cos 4¹

#(A2
3
#B2

3
) cos 6¹#2A

1
B
3
(sin 2¹#sin 4¹ )#2A

3
B

3
sin 6¹)H
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#vR MdX#e
1
X2 (2A

1
B
3
cos 2¹#4A

1
B
3
cos 4¹#6A

3
B
3
cos 6¹

!(A2
1
#2A

1
A

3
) sin 2¹!4A

1
A

3
sin 4¹#3 (B2

3
!A2

3
) sin 6¹)N

#v G1#
3

2
e
2

(A2
1
#A2

3
#B2

3
)!

e
1
2

X2 (A2
1
#9A2

3
#9B2

3
)H

#A
3

2
e
2
A2

1
#3e

2
A

1
A

3
!

3

2
e
1
X2A2

1
!7e

1
X2A

1
A

3B cos 2¹

#(3e
2
A

1
A

3
!13e

1
X2A

1
A

3
) cos 4¹

#A
1

2
(3e

2
(A2

3
!B2

3
)!27e

1
X2 (A2

3
#B2

3
))B cos 6¹

#(3e
2
A

1
B

3
!7e

1
X2A

1
B

3
) sin 2¹#(3e

2
A

1
B

3
!13e

1
X2A

1
B
3
) sin 4¹

#(3e
2
A

3
B

3
!27e

1
X2A

3
B

3
) sin 6¹#N¸¹S"0, (B2)

where N¸¹S stands for the non-linear terms, the second order stability is obtained by
substituting

v(¹ )"b
0
#b

2c
cos 2¹#b

2s
sin 2¹#b

4c
cos 4¹#b

4s
sin 4¹ (B3)

into the linearized version of equation (B2), and applying the harmonic balance; this leads to
a set of linear homogeneous equations for b

0
, b

2c
, b

2s
, b

4c
and b

4s
, that cas be written in

matrix form as

Mb"0, (B4)

where b is the column vector (b
0
, b

2c
, b

2s
, b

4c
, b

4s
)T and M is the characteristic matrix. The

elements of the coe$cient matrix M are speci"ed below:

M
11
"1#3

2
e
2

(A2
1
#A2

3
#B2

3
)!1

2
e
1
X2 (A2

1
#9A2

3
#9B2

3
),

M
12
"1

2
A

1
B
3

(3e
2
!7e

1
X2),

M
13
"3

4
e
2

(A2
1
#6A

1
A

3
)!1

4
e
1
X2 (3A2

1
#17A

1
A

3
),

M
14
"1

2
A

1
B
3

(3e
2
!13e

1
X2),

M
15
"1

2
A

1
A

3
(3e

2
!13e

1
X2),

M
21
"

e
2
2

(3A2
1
#6A

1
A

3
)!1

2
e
1
X2 (3A2

1
#14A

1
A

3
),

M
22
"2Xd#1

2
A

1
B

3
(3e

2
!9e

1
X2),

M
23
"1!4X2#1

2
e
2
(A2

1
#A

1
A

3
#A2

3
#B2

3
)!1

2
e
1
X2 (5A2

1
#9A

1
A

3
#13A2

3
#13B2

3
),
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M
24
"1

2
B

3
(3e

2
(A

1
#A

3
)!e

1
X2 (15A

1
#19A

3
)),

M
25
"1

4
e
2
(3A2

1
#6A

1
A

3
#3A2

3
!3B2

3
)!1

4
e
1
X2 (11A2

1
#30A

1
A

3
#19A2

3
!19B2

3
),

M
31
"A

1
B
3
(3e

2
!7e

1
X2),

M
32
"1!4X2#3

2
e
2
(A2

1
!A

1
A

3
#A2

3
#B2

3
)!1

2
e
1
X2 (5A2

1
!9A

1
A

3
#13A2

3
#13B2

3
),

M
33
"1

2
A

1
B
3

(3e
2
!9e

1
X2)!2Xd,

M
34
"1

4
e
2
(3A2

1
#6A

1
A

3
!3A2

3
#3B2

3
)!1

4
e
1
X2 (11A2

1
#15A

1
A

3
!19A2

3
#19B2

3
),

M
35
"1

2
B

3
(3e

2
(A

3
!A

1
)#e

1
X2 (15A

1
!19A

3
)),

M
41
"A

1
A

3
(3e

2
!13e

1
X2),

M
42
"1

2
B

3
(3e

2
(A

3
!A

1
)#e

1
X2 (15A

1
!19A

3
)),

M
43
"1

4
e
2
(3A2

1
#6A

1
A

3
#3A2

3
!3B2

3
)!1

4
e
1
X2 (11A2

1
#15A

1
A

3
#19A2

3
!19B2

3
),

M
44
"4Xd,

M
45
"1!16X2#3

2
e
2
(A2

1
#A2

3
#B2

3
)!1

2
e
1
X2 (17A2

1
#25A2

3
#25B2

3
),

M
51
"A

1
B
3

(3e
2
!13e

1
X2),

M
52
"1

4
e
2
(3A2

1
#6A

1
A

3
!3A2

3
#3B2

3
)!1

4
e
1
X2 (11A2

1
#15A

1
A

3
!19A2

3
#19B2

3
),

M
53
"1

2
B

3
(3e

2
(A

1
#A

3
)!e

1
X2 (15A

1
#19A

3
)),

M
54
"1!16X2#3

2
e
2

(A2
1
#A2

3
#B2

3
)!1

2
e
1
X2 (17A2

1
#25A2

3
#25B2

3
),

M
55
"!4Xd.

Non-trivial solutions for b
0
, b

2c
, b

2s
, b

4c
and b

4s
exist only when the determinant of the

coe$cient matrix M in equation (B4) vanishes, which gives the second unstable portions of
the steady state response curves of the non-linear oscillator obtained using two terms.

B.2. STABILITY ANALYSIS OF THE ASYMMETRIC SOLUTION

By following the above procedure, i.e., by substituting equation (31) into the LVE (30) and
writing the set of linear algebraic equations in a matrix form, the elements of the
characteristic matrix are

M
11
"1!

X2

4
#3e

2 AA2
0
!A

0
A

1
#

A2
1

2 B!
e
1
X2

8
(2A2

0
!6A

0
A

1
#5A2

1
),

M
21
"!

Xd
2

,
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M
12
"

Xd
2

,

M
22
"1!

X2

4
#3e

2 AA2
0
#A

0
A

1
#

A2
1

2 B!
e
1
X2

8
(2A2

0
#6A

0
A

1
#5A2

1
),

Non-trivial solutions for b
1@2)c

, b
1@2)s

exist only when the determinant of the coe$cient
matrix M vanishes, which gives the unstable portions of the asymmetric solution of the
non-linear oscillator obtained using equations (28) and (29).
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